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Threesetsoffield countdamagedatacaused bythestalk-eyed fly (SEF)Diopsis
Iongicornis Macquart, at threericegrowthstages werestatistically analyzed to determine
if the Box-Cox power-shift transformation couldstabilize thevariances andnormalizethe
distribution. Theanalyses oftheresiduals ofthetransformeddatarevealed thatthe kurtosis
coefficients decreased to insignificant values, the skewness coefficients also decreased
butremained significant, andthenormalitystatisticincreased butalsoremained significant.
Ontheotherhand, thetransformation didhomogenized thevariances forsomecombinations
of A. and c. The bestcombination of x andc that would satisfyhomogeneity of variances
assumption and that would makethe distribution a little bit normal is A. = ~1 and C = 1.
Therefore, inanalyzing fieldcountSEFdamagedata in ricewhichisexpressed asnumber
of damaged tillers per hill, the useof the reciprocal transformation with shifting constant
equalto 1 is recommended.
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1. INTRODUCTION

residual

•
The analysis ofvariance (ANaVA) is a widely used statistical technique in analyzing comparative

experiments. However, thistechnique isvalid onlywhenthe mathematical andstatistical assumptions are
met. These assumptions are: (i) the treatment effects and environmental effects are additive, (ii) the
experimental errors are independent, (iii) the experimental errors have common variance, and (iv) the
experimental errors are normally distributed. Failureto meet anyone of these assumptions would affect
both the level of significance and sensitivity of the F- statistic(Cochran, 1947).

Whenthere is sufficient reasonto believe that the underlying conditions requiredinthe ANOVAare
not met in the data under analysis, alternatives or techniques to makevalid tests on such data possible is
greatlydemanded. For datawhich fail to meetthe test conditions thereare two approachesrecommended
by Bartlett (1947) namely, (i) bend the data to fit the assumptions of the ANOVAby making nonlinear
transformation, or (ii)develop new method of analysis which approximate the original form of the data.



•
However, data obtained from many experiments do not usually satisfy the assumptions required,

particularly normality and homogeneity ofvariance, so the useofa transformation is needed. Hence, the
reason for transforming dataareto find a metric inwhich the theoretical assumptions made intheanalysis
are more readily satisfied and to make the analysis simpler than would be possible (Draper andHunter,
1969). The use of a transformation may also be necessary to normalize the distribution of the errors or
to achieve greater consistency of variance (Dolby; 1963).
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In many statistical experiments, one usually encounters data that are not normally distributed. For
instance, data that consist of integers suchas field countswhich are randomly distributed over a number
of units usually follow Poisson distribution. Data that are distributed as Poisson havea variance equal to
themean (Harcourt, 1963). Tobeable to make thevariance ofsuchkinds ofdata independent of themean,
a transformation is required.

With the availability of many typesof data transformations, one is confronted with the problem of
choosing thebesttransformation to use. Ratherthansimply trying various transformations inorderto find
outwhich oneworksbest,Box-Cox (1964) developed a procedure forestimating thebest transformation
to normality within the family of power transformation given as

Y(A) =(y'tA-l) , A:;t: 0

or

Y(A) =In y, A =0

The modified Box-Coxtransformation included a shifting constant c defined as

[(y + c).t -1]
Y(A) = A ,A:;t:O

or

Y(A) =In(y+c), A =0

The Box-Cox procedure have been used by many researchers since it was developed in 1964.
Guerrero (1982) applied it to the study of binary response model and De Ramos (1983) used it in
comparing the arcsine transformation andBox-Cox transformation inanalyzing percentage data. Carrol
andRuppert (1984) usedtheBox-Cox procedure infitting theoretical models to data.Barlev(1988) gave
a simpler method of obtaining a class of variance stabilizing transformations. Tsai (1988) used power
transformations in a two-stage procedure to achieve normality and homogeneity of the errors and to
remove non-linearity ofthe regression function. Hinkley (1988) extended Lawrance's results concerning
test oftransformations in regression. Logothetis (1990) assessed the applicability ofBox-Coxtransfor-

• mation for simplifying and statistically validating a "Taguchi analysis".

The problem of this study focused on the analysis of the field count damage (dead-hearts) data on
rice, caused bythestalk-eyed fly (SEF)DiopsislongicornisMacquart (Diptera: Diopsidae). Thequestions
raised were:

(1) Does the field countSEFdamage data measured as number of damaged tillers per hill at various
plant growth stages follow a Poisson distribution?

..
(2) CantheBox-Cox power-shift transformations make thedistribution of theerrorsinSEFdamage

normal?

(3) Canthe Box-Cox power-shift transformations stabilize the variance ofSEF damage among the
various plant growth stages?
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With these questions in mind, this studywas conducted with the following objectives:

(1) to determine if the field count SEFdamage data expressed as number of damaged tillers per hill
in rice follows a Poisson distribution.

(2)to determine iftheBox-Cox power-shift transformations canmake thedistribution ofthe residuals
in a one-way analysis of variance model follow a normal distribution, and

(3) to determine if the Box-Cox power-shift transformations can stabilize the variances of the
experimental errors in SEF damage among the various plantgrowth stages.

2. METHODOLOGY

The Data

Thedata used inthisstudywere SEFdamaged tillers on the mostcommonly cultivated ricevariety,
ITA 306 (FARO 37). The field experiment was conducted at the National Cereal Research Institute
(NCRI), Badeggi, Nigeria during the 1990 wet season (WS). Oneweekafter transplanting, 10sampling
stations each measuring 1Mx 1Mwere established randomly in the field. In each station, 25 hills of the
rice plants were randomly sampled starting from 14 days after transplanting (DAT) up to 70 DAT, at
weekly intervals. SEF damage was assessed by counting the number of damaged tillers and total tillers
per hill on the 250 randomly selected hills on each sampling occasion.

In this study the SEF damage data from only three growth periods representing the rice's early
vegetative (14DAT), maximum tillering (42DAT) andmaturity (70DAT)stageswereusedintheanalysis.
These growth stagesalsorepresent to thevarying degrees of vulnerability against SEF. In addition, since
the sample sizeper sampling timewas quite. large(equal to 250) it was thought that by using data from
threegrowthperiods wassufficient to obtain reliable results thatwould answertheobjectives ofthisstudy.

Fitting the Poisson Distribution

Data on counts such as the number of tillers per hill in rice may follow approximately a Poisson
distribution. Thus, thefirst partofthisstudywasto determine ifthedatasetsforeachsampling time follow
three different Poissondistributions. On a per hill basis, the number of SEF damaged tillers denoted by
a variate x can havevalues 0, 1, 2, ....r, where r s; r ,r being the total number of tillers in a hill of
the rice plant. It was observed that in the 750 hills ra~do~ selected, the values of r ranged from 8
to 54. Thusto determine ifineachsamplingtime, damage datasetfollows aPoisson distrii:tion, thevariate
x wasdenoted byXi' defined as the number of damaged tillers inthejth class valueofx at the ithsampling
time, andJ;.was ddfined as the frequency or number of hills corresponding to Xi' where; = 1,2,3, and
j = 1,2, ...,1cj' k, being the number of discrete classes of thevariate X at the ithsa~pling time. Therefore,
the data representation [x., £] gave the class values and class frequencies of the variatex.

IJ Jij

If the variate Xi in the ith sampling time follows a Poisson distribution with parameter m; then the
probability function of Xi is given by

-"'I ( ).11
f'(x) = e m1i xi = O,I , ... ,Ti

Xj.
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where e::::: 2.7183 is the base of the natural logarithm. To determine whether the data x; fitted a Poisson
distribution, the parameterm; was estimated using the maximum likelihood estimatemj given by

tXij/;1'
A 1';'1m.= '-"--, k,

L/;1'
1'=1

k,

LXij/;1'
1'=1= ;=1,2,3

250 '

To test the goodnessoffit ofthe data x; withthe estimated parameterm; the Kolmogorov-Smirnov
D statisticdefined as

n, = max[F(x;1') - S(xij)]' i = 1,2,3 was used,
J

Xu Al

whereF(x;1')=e-~Lm;, I=O,I"",xij
1=0 I.

Xu J.
and S(x.. ) ="_il

'J ~ 250'

The quantity F(x) was the estimate of the theoretical relative cumulative frequencies and S(x) was
the sample relative dumulative frequencies. The significance of the D; statistic was determin~d by
comparing D. with the critical valueDsx(,n) =D 05(250)" When D; ~D 05(250)' the test was declared significant,
which meant'that the data set x; in the rth samplmg time did not follow a Poisson distribution, and when
D; < D.

0
5(250)' then the data set x; fitted a Poissondistribution with parameterestimated by mr

Estimation of the Parameter 1 in the Box-Cox Power-Shift Transformation

The fact that the three data sets were counts which may follow Poisson distributions, the use of
analysis of variance to compare the mean SEFdamage levels of the three sampling timeswill not bevalid
because of non-normality and inequality of the variances. Thus in practice the reasons for using the
transformations (X)12 or (x+.5)1/2 and In(x) or In(x+1)for countdata are to moreor lessnormalize the data
as well as to stabilize the variance. As an alternative to these commonly used transformations for count
data, Box-Cox power-shift transformation has been used in many data analyses to attain normality and
stability of variances. Since in the observed three data sets the values of the variate x predominantly
consisted of O's, the use of Box-Cox power shift transformation

{

(X+ Cyt - l
x(A.) = A. for A. ;at 0

In(x+c) for A. =0
was in order..

Let us denote byxij the number of damaged tillers at thejth hill of the ith sampling time, where i =
1),3,)=1,2,...,250. The data set xijwere then transformed to
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when A* 0

when A =0

for values of A ranging from -4 to 2 at interval 0.25 and for fixed values of c equal to 0.25, 0.50, 0.75,
1,2, and 3. The reason for using Ain the rangefrom -4 to 2 was to include the case ofA=..:1 (reciprocal
transformation), A= 0 (logarithmic transformation), and A= 1/2 (square root transformation), while the
reasonfor the useofc = .25, .50, .75, 1,2, and3wasto include the conventional constantsnormally added
to x which are c = .5 andc = 1.With the 25 valuesof Aand6 valuesof c, a total of25 x 6 = 150 data sets
of 750 observations each were created.

•
In order to determine the value of Afor a given c that will normalize and stabilize the variancesof

the three sets of data, the one-way classification model
xu,(A.)=,u+ Tj +eji , e= 1,2,3 j= 1,2,...,250

was fitted for each valueof Aper givenfixed valueof c inorder to generate 25 valuesof the meansquare
error (MSE) for every value of c. For each value of A, the likelihood function L(A) defined as

, 3 250

L(A.)=- r In MSE(A.) + (A. -1)LLL In (Xii + c)
2 n, ,

, I J

where MSE (A) is the mean square error of the transformed data using A, y is the degrees of freedom
associated withMSE, andn is the total sample was computed. The estimateof A, say A, was determined
as value of Acorresponding to the maximum value of L(A). Hence,

A

A. ~ max L(A.)
..t

The above analysis ofvariance procedure also gave information as to what happened to the values
of the F-statistic in testing the significance oft; in the model.

Test of Normality

•
A

The question of how normal could the distribution of the residuals be' after transformation was
answered by analyzing the residuals e.. defined by

IJ '

iii = xu' (A.) - jJ-Tj , ! i =1,2,3" j =1,2,... ,250

The test for the normality of the residuals e.. was carried out for each value ofAand for each fixed •
value of c using the SAS package done on a ma~nframe ffiM 4331. The results of the residual analysis
indicated the values and significance of the Shapiro-Wilk W Statistics, as well as the coefficient of
Skewness (g) andcoefficient ofkurtosis(gt)' Whenthe distribution ofthe residuals followapproximately
a normal distribution, the valuesof Ware close to unity, while the valueofg. andg2 are close to O. Since
thesignificance oftheg. andg~ statisticswerenot indicated inthe output, theapproximate standardnormal
Z-statisticwere computed using

Z(g ) - g. Z(g ) - g2
I - ~' 2 - ~2%

where n = 750.

..
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Test of Homogeneity of Variances

One ofthe assumptionsofanalysis ofvariance is that the errors must have homogeneous variances.
Thus another question this study would like to answer was what power-shift transformation of the
infestationdata could makethe withinsampling timevarianceshomogeneous.To get the answer, the Box­
Cox power-shift transformation was applied to the raw data for values of Afrom m-4 to 2 at an interval
of .25, and for c values equal to .25, .50, .75, I, 2, and 3. After the transformations were made, the
Bartlett's homogeneityofvariancesr test was applied to compare the within sampling time variances.
The combinationsof Aand c that gave insignificant r-values indicated the power-shift transformations
that stabilized the variances.

The first step was to compute the sampling timesampling variances; and the pooled samplevariance
s 2 by the formulas '

p

", )2I (x;j?-) -X;

s~ =......J'-.-----
I

S2 = ..:..;=-';1,.- _
p 3

I(n; -I)
;=1

3 .

- " (A)where x; = L..J Xij ,11.=250 for all i.,
;=1

Then the X2 statistic was computed as

1
[

3 3 ]2 _ 2 2
Z(2df) = M ~(lli-I)loglosp-~(ll;-I)IOgIOS;

where

1 3 1
M=I+ I-- , k=3

3(k -I) ;=) II. - 1 "
- I L..J(1l;-1)

The computations of the'X2
- statistic was also done using SAS programme on a mainframe ffiM

machine. _



•3. RESULTS AND DISCUSSION

Fitting of Poisson Distribution to the Data

Thedistribution of the SEFdamagedatawhich isexpressed as of damagedtillersperhill werehighly
skewed to the right, with the highest frequency at x = 0 (no infestation) in all of the three plant growth
stages (Table I). The pattern of frequency distributions were quite similar, x = 0,10 = 176; x = 1,1. = 63;
and x = 2 f = 11 for 14 OAT x = 0 f = 204' x = 1 j, = 31' x = 2 f = 12' x = 3 r = 3 for 42 DAT and

, 2 " 0 ' , I ' , 2 ' ,J 3 '
x= 0,10= 188;x=1,J.. = 30; x= 2,}; = 12, x= 3,~ = 15,x=4,~ = 5 for 70 DAT. Thenumberofdamaged
tillershad a meanof (x) of .340 and variance (s2) of .31395 for 14 DAT; a meanof .256 and varianceof
.35990 for 42 DAT;and a mean of .476 and variance of .94922 for 70 DAT. It was noted that the mean
and variance at 14 and 42 OAT did not show much difference whichsignified that each followa Poisson
distribution, but at 70 OAT the mean and variance were already muchdifferent, the variancebeingabout
twice that of the mean signifying that the distribution was no longer Poisson.

Usingthe mean x as estimateof the parameterm of aPoissondistribution, the estimateofthePoisson
probability functions were:

J(x) = e-.340 (.340Ylx! at 14 DAT,

J(x) = e-·256 (.256Ylx! at 42 DAT,

and J(x) = e-·476 (.476ylx! at 70 DAT.

These estimatesofPoisson probability functions were then used to estimatethe theoreticalrelative
cumulative frequency distributions F(x;) Table II. For example, at 14 DAT (i=1),

F(xij) = e-·340f .340~, 1= O,I,...,xij
1=0

Hence,

F(O) =e-.340 .340/<;',

=.712

F(I)=f(O)+ f(l)

- e-·340 [.3400I +.340
1 I]

- 10! II!

=.953

F(2) =fd(O) + f(1)+ /(2)

=e-·340 [.340
0
I +.340

1I + .340
2 I]

10! II! 12!

=1.0

The other valuesof F(x l) , namely, F(x
2
) for 42 OAT andF(x

3
) for 70 OAT were computed by the

same procedure.

•

•

•

To test the goodness of fit of Poisson distributions to the data, the sample relative cumulative
frequency distribution S(x;) were also computed by the formula .

S(xij) = ff;{50' 1=0,2, ... ,xij
/=0 ..
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For example, at 14 DAT (i=I),

2

Hence,

•

•

•

•

S(O) =~j250
= 176/250
= .704

S(I) = (1.0 +~1)/250

176+63
=

250
=.956

S(2) = (1.0 +~1+~2)/250

176+63+ 11
=

250
=1.0

The test ofgoodness of fit, i.e., whether S(x) was in close agreement with F(x) for all i and} was
done by the Kolmogorov-Smirnov D statistic whfch is also shown in Table II. The r~sults indicated that
the distributions of the number of damaged tillers per hill at 14 DAT and 42 DAT followed Poisson
distributions, but that for 70 DAT it deviated from a Poisson type distribution. The reason for no longer
satisfying a Poisson distribution at 70 DAT, was that.higher damage occurred that stretched the 'curve
further to the right givinga variance much higher than the mean.

Estimates for x in the Box-Cox Power-Shift Transformation

The mean square error values (MSE) obtained from the analysis ofvariance of the transformed
variatesx'" areshowninTableIII. Itwill be noted thatwhenc= .25, .50and.75. TheMSE valuesattained
a minimum value when Awas varied from -4 to 2. For example, at c = .25, the minimum value ofMSE
was. 55 corresponding to A=.50; at c=.5, the minimum value ofMSE was .35 corresponding to A= 0
and A= .5; at c = .75 the minimum value ofMSE was .103 corresponding to A= -3.0. However, when
c = 1,2,3, the MSE values increased exponentially as Awas varied from -4 to 2. These results indicated
that the minimum values ofMSE occurred at values of Alower than -4.0.

The .results shown in the Table II also indicated that when the power A< 1, the values ofMSE
decreased.asthe value ofc was increased from .25 to 3; the value ofMSE was constant for all valuesof
c whenx= 1;and when the power A> 1, the valuesofMSE increased as the values ofc were increased.
For example, at A= -4, the MSE values decreased from 729.9 to .0000103 when c was increased from
.25 to 3~ and when A= 2, the MSE values increased from 3.08 to 14.7 when c increased from .25 to 3,
respectively.

By substituting the values ofMSE in the likelihood function
3 250

L(y) =- YIn MSE(l)+(l-I).LLLln(x'j +c)
2 n ; j

I

where y= 747 andn= 750for all thevaluesofAandc, the maximum valuesofL(A) wasfoundto be 1205.8
corresponding to ~ = -2.0 when c = .25; equal to 1042.7 corresponding to ~ = -2.75 when c = .50; and
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equal to 962.9corresponding to ~ = -3.50when C = .75(Table IV). Asthe minimum valuesofMSE were
not attained by varying the valuesof ~ for C = 1,2, and 3, the maximum values of L(~) when C = 1, 2,
and 3 were also not attained. Thus no estimates of A. were obtained for c = 1,2, and 3. Therefore, the
Box-Cox power-shift transformations for the number of damaged tillers were as follows: .

x(..t) =(x+.25r
2

.
0
-1 for c = .25

(-2.0)

-, x(..t) = (x+.50r
2

.
75

-1 for c = 0.50
(-2.75)

X
( ..t) __ (x+.75rl 50

- 1
and for c = .75

(-3.50)

Effect of the Box-Cox Power-Shift Transformations on the Distributions of
Residuals

•

•

Theresultsofthe analysis ofthe residuals e..weresummarized intermsofthe Shapiro-WilkWstatistic
(TableV), coefficient of skewness g/ (Table VI), and Kurtosis coefficient g2 (Table VII),

h ' A - (~) A A • - 1 2 3 . - 1 2 250were eij-xij -J.l-'t, 1- , , ,j- , , ... ,

{

(x.. +c)~-I
(~) " for A. '* 0x.. = A.

" . In(xij+c) for A.=O
A 350 250 X.(~) / • '

~=II "/250-J.l
;=1 j=1

A 250 X.(%)
and 't; =I" 250_ A

j=1 J.l

Asreference points, thevalues ofnormality statistics W, gl andg2 were.633,3.07,and 14.35, respectively,
when A. = 1, i.e., there were only shifting of constant transformations madeon the raw data. All ofthese
normality statistics were very significantly different from the critical values of W01(750) = .930,
gJOI,750] = 0.175, andglOI,750] = .350.

Asto whathappened to thevalues of Wwhenthevalues of A. wherechanged from-2.0 to 2.0 at fixed
value of c can be seen inTableV. It was noted that the valueof Wattained a maximum value of .663 or •
.662within therangesof A. andc.Sothismaximum value wasstill highly significant compared to thecritical
value W01(750) = .930. Note that P[W:s; W01(750)] = .01,henceP(W:s; .663)< < .01. The maximum values
of Wwere observed whenx = .50 and c = .25 and .50; A. = .25 and c = .75 and 1.0; A. = 0 and c = 2; and
A. = -.25 and c = 3.0. For the other combinations of A. andc, the values of Wobtained were smaller than
.662which means that the distributions of the residuals for those transformations were even more non-
normal.

The effects of the transformations on the skewness coefficient (gl) can be seen inTable VI. It was
noted that as A. was varied from -2.0 to 1 and the c value was varied from .25 to 3, the values increased
to a constantvalueon.07. The lowestvalue ofg\ was 1.14when A. = -2.0 and c = .25. The valuesofg
increased very rapidly for A. > 1, the rate of increase beingfaster for lower values of c. \

..
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There were profound effects of the power-shift transformations on the values of the Kurtosis
coefficient (gi)' At any given fixed valueofc, the values ofg2 increased exponentially as the valuesofA
was increased from -2.0 to 2.0. For example, at c = .25,g2 = ··.636 when 1..= -2.0 andg = 120.96when
A= 2.0. The desirable values of g2 were those which values were close to °or to the critical value
glOI,750] = .350. Therefore, the combinations ofAand c that made the valuesofg2 not significant or
almost not significant were:

, (A = -.25, c = .25) giving g2 = -.131
(A = -.25, c = .50) giving g2 = .322
(A = -.50, c = .50) giving g2 = -.046
(A = -1.0, c = .75) giving g, = -.211
(A = -1.0, c = 1.0) giving g, = .003

and (A = -2.0, c = 2) giving ~ = .016.

The Effects of the Power - Shift Transformation on the Stabilization of
Variances

The resultsofthe Bartlett's - X2 test for homogeneity ofvariances are shown in TableVIII. For the
sevenvaluesofAfrom - 4 to.5 and sixvaluesofc from .25 to 3, the valuesofX' obtainedranged from
.0224 to 31.26. Comparing these values of'X' with the critical value X2 05 = 5.991, some valueswere
significant [X2 ~ 5.991] andsomewere not [X2 < 5.991].Those values0£'3fl that were not significant are
underlined to indicate theappropriate combinations ofAandc thatmadethewithin sampling timevariances
homogeneous.

Based on the results shownin Table VIII, some ofthe best combinations ofx and c that stabilized
the variances ofthe damage data were as follows:

(I) 1..= .25, c = .25
(2) 1..=0, c = .25 or c = .50
(3)A~-I, c= 1 orc=2
(4) 1..=-2, c = 3

Therefore, the power-shift transformation that can be applied to stabilize the variances ofthe number of
SEF damaged tillers, is any of the following simple transformations:

(I) Logarithmic (A = 0):
rO) = In (x + .25)

or rO) = In (x + .50)

(2) Reciprocal (A = -I):

x(-I)= (x+lf'-I
-I

x
=

x+1
or

X(_I)=(x+2f '-1
: -I

x+1
=

x+2

27
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The Effects of the Power-Shift, Transformations on the F Statistics

Fromtheprevioussections itwasfound out that the power-shift transformation was ableto stabilize
the variances of the SEF damagefield count data. It was also found out from the residual analyses that
the normality was not attairied; the distribution remained skewed; and the distribution attained normal
heights. The questionthereforeis, which of theF valuesgiveninTableIX are consideredvalid for testing
the differences between the damage levels in three plantgrowth stages. But basingfrom the skewness
coefficient (g), Kurtosis coefficient (g2)' normality test (w) and homogeneity test (X'), the best
combination for Aand c were A=:= -1 andc = 1.0.For this combination, the F value was 3.50 at 2 and 747
degreesoffreedom.Thecorresponding TypeI probability level isabout .05.Ontheother hand, theFvalue
corresponding to no transformation (A = 1) was 6.68 with probability level about .001. The statistical
implication of these results is that on the averageevensmall differences indamagelevelswill be declared •
significant more oftenlyeven though the actual damage levels in the populations are the same.

4. SUMMARY AND CONCLUSIONS

ThreesetsoffieldcountSEFdamage dataonricevariety, ITA306forthreeplantgrowth stageswere
statistically analyzed with the main objective of determining whether the Box-Cox power-shift
transformations could stabilize the variances andnormalize the distribution ofthe data. The resultsare as
follows:

(1) At 14and42 DATthe distributions of the SEFdamaged tillers followed the Poissondistribution.
The mean damagelevels andvariabilities were similar inmagnitudes, thus madethe data to fitthe Poisson
model. However, at 70 DAT, the distribution of the data did not follow a Poisson distribution because
eventhoughthe mean damagelevel increased, the variability alsoincreased to a magnitude that was about
double of the mean.

(2) The valuesof the power of X that maximized the Box-Coxlog likelihood function were - 2.0 for
c = .25; -2.75 for c = .5; and - 3.50 for c = .75. These results differed very muchfrom those obtained in
residual analysis for which good choices for Awere 0, .25, and .5 based on the normality test w; -.25,
-.5 and -1.0 based on the kurtosis statistic (g2); and -1.0 and -2.0 based on the skewness statistic (g.).

(3)The power-shift transformation had profound positive effects on stabilizing the variances. The
good choices for the power of X were A= 0 for anyshifting constantc equalto A= .25, A. = .50 and A=.75
and A= -1 for c equal to 1.

(4)Fromthe resultsabove, the use of the power A= -1 and shifting constant c = 1 is recommended.
Thismeansthat the appropriatetransformation for field count SEF damaged tillers(dead-hearts) data in
rice is reciprocal, which in simplified form is:

x
X(A)=-

x+ 1

•

•
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TABLE I

Frequency and percentage distributions of the number of SEF damaged tillers per hill
after transplanting, ITA 306, 1990 WS.

Number of Days after transplan ting (DAT)

damaged 14 42 70
tillers

(x) (f) % (f) % (f) %

0 176 0.704 204 0.816 188 0.752

1 63 0.252 31 0.124 30 0.120

·2 11 0.044 12 0.048 12 0.048

3 0 0 3 0.012 15 0.060

4 0 0 0 0 5 0.020

Sum 250 1.0 250 1.0 250 1.0

Mean .340 0.256 047,6

Variance 0.31365 0.35990 0.94922

TABLE n

The Kolmogorov-Smimov goodness of fit test (D) for fitting the Poissong
• distribution to the number of SEF damaged tillers per hill in three plant growth

~tages,ITA 306, 1990 WS.

'Number of SEF 14 DAT 42 DAT 70 DAT
damaged tillers

(x) " F(x) S(x) F(x) Sex) F(x) Sex)

0 0.712 0.704 0.774 0.816 .0621 .0752

1 0.953 0.956 .0.972 0.940 0.917 0.920

• 2 1.0 1.0 0.996 0.988 0.998 0.980

3 1.0 1.0 0.999 0.988

4 1.0 1.0

Estimate of 0.340 0.256 0.476
Parameter (m)

D-value 0.008 NS 0.042 NS 0.131 ••
NS: Not significant ••• Highly significant

nu: x

•
F(x) =eL m/;; Sex) =L J;..{so D = maxIF(x) - S(x)1

i=O i=O
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TABLElli

Values ofthemean square error (MSE) in theanalysis ofvariance atfixed values ofAandc.

c

A. .25 .50 .75 1 2 3

4.0 729.gJ 2.92 .Ill .0HX5 .<XXXX317 .<XXXX)103

-3.0 83.65 1.25 .1m .0170 .00159 .<XXX>127

-2.0 11.19 .82 .HX5 .0302 .00121 .<XXX>166

•-1.0 2.08 .39 .136 .<X521 .00824 .00232

-.5 1.08 . .35 .168 .0964 .0226 .00897

0 .68 .35 ZlJ .163 .<X547 .0357

.5 .55 .42 .349 .29) .1963 .1478

1 .641 .641 .641 .641 .641 .641

2 3.08 3.74 1.48 5.29 9.355 14.7

Theunderlined values arethesmallest ata given value ofc.

TABLE IV •
Estimates of the power corresponding to the maximum of log likelihood function L at fixed
values of c.

c=.25 c=.50 c=.75

A- L A- L A- L

-2.50 1192.6 -3.25 1035.2 -4.0 958.6

-2.25 1202.5 -3.0 1040.5 -3.75 961.9

-2.0 1205.8 -2.75 1042.7 -3.50 962.9 •
-1.75 1201.8 -2.50 1038.2 -3.25 961.9

-1.50 1188.4 -2.25 913.3 -3.0 957.7
AA

Underlined figures are estimated A- ( A) and the corresponding to maximum log likelihood
function L(max).
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TABLE V

Values of the normality statistic W based on residuals at fixed values of Aand c.

c

A .25 .50 .75 1 2 3 4

-2.0 .609 .612 .617 .621 .631 .645 .653

-1.0 .615 .622 .627 .631 .651 .658 .659

• -.5 .624 .630 .641 .647 .659 .661 .661

-.25 .629 .642 .650 .655 .661 .662 .661

0 .643 .653 .657 .660 .662 .661 .661

.25 .656 .661 .662 .663 .660 .657 .656

.50 .663 .663 .661 .660 .655 .656 .656

1.0 ..633 .633 .633 .633 .633 .633 .633

1.5 .525 .544 .557 .566 .588 .599 .606

All computed values ofW are highly significant

•

TABLE VI

Values of the skewness coefficient (g1) based on residual analysis at fixed values of ~and c

c

A .25 .50 .75 . 1 2 3

• -2.0 1.14 1.15 1.16 1.19 1.30 1.42
t:

-1.0 1.16 1.20 1.24 1.30 1.48 163

-.5 1.21 1.28 1.36 1.43 1.64 1.81

0 1.36 1.48 1.58 1.64 1.90 2.06

.5 1.82 1.95 2.05 2.13 2.33 2.46

1 3.07 3.07 3.07 3.07 3.07 3.07

2 9.35 8.61 7.99 7.48 6.11 5.35

AU values of gl are significantly different from O...
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TABLE VII

Values of the kurtosis coefficient (g2) based on residual analysis at fixed values ofA and c

c

A. .25 .50 .75 1 2 3

-2.0 -.636 -.605 -.545 -.459 .016 .552

-1.0 -.567 -.410 -.211 .003 .880 1.683

-.5 -.373 -.046 -.287 .614 1.785 2.776

-.25 -.131 .322 .747 1.143 2.488 3.561 •
0 .361 .943 1.473 1.946 3.469 4.611

.5 3.06 3.982 4.685 5.260 6.910 7.993

1 14.35 14.35 14.35 14.35 14.35 14.35 .

2 120.96 105.89 93.79 84.01 59.40 46.74

All values of g2 are significantly different from 0 except those which are underlined

TABLE VIII

Values of x' statistic (Bartlett) for testing equality of variances of fixed values orA and c.

c •
A. .25 .50 .75 1 2 3

-4.0 16.36 15.97 15.19 14.10 8.74 4.27

-3.0 16.13 15.06 13.48 11.68 5.13 1.42

-2.0 14.99 12.36 9.62 7.16 1.27 .034

-1.0 10.00 5.58 2.77 1.12 2J. 3.44

0 .0224 .778 2.52 4.51 11.92' 17.61

.25 1.69 4.77 7.69 10.33 18.38 23.77 •

.50 9.25 13.55 16.85 19.53 26.83 31.26

All values of)(l are significant (p<.OS) except those which are underlined. ..
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TABLE LX

Values of theF-statistic in the analysis ofvariance at fixed values 00.. and c.

33

c

A. .25 .50 .75 2 3

-4.0 , 3.96 3.93 3.88 3.81 3.55 3.44

-3.0 3.94 3.87 3.78 3.69 3.46 3.45

• -2.0 3.88 3.73 3.61 3.53 3.47 3.63

-1.0 3.66 3.52 3.48 3.50 3.78 4.12

-.5 3.53 3.51 3.59 3.69 4.16 4.55

0 3.64 3.83 4.03 4.21 4.76 5.12

.5 4.55 4.84 5.05 5.21 5.67 5.85

6.68 6.68 6.68 6.68 6.68 6.68

2 , 9.54 9.38 9.48 9.08 8.59 8.24

Allvalues ofF aresignificant with 2 and 747degrees offreedom [F(0.05) =3.00].
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