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Abstract

Three sets of field count damage data caused by the stalk-eyed fly (SEF) Diopsis
longicornis Macquart, at three rice growth stages were statistically analyzed to determine
if the Box-Cox power-shift transformation could stabilize the variances and normalize the
distribution. Theanalyses ofthe residuals ofthetransformed data revealed thatthe kurtosis
coefficients decreased to insignificant values, the skewness coefficients also decreased
but remainedsignificant, and the normality statistic increased but also remained significant.
Ontheotherhand, thetransformation did homogenized thevariances for some combinations
of A and c. The best combination of x and ¢ that would satisfy homogeneity of variances
assumption and that would make the distribution a little bit normal is A =<1 and c = 1.
Therefore, in analyzing field count SEF damage data in rice which is expressed as number

of damaged tillers per hill, the use of the reciprocal transformation with shifting constant:

equal to 1 is recommended.

Keywords: Poisson distribution, power-shift transformation, residual
analysis, rice, stalk-eyed fly, Diopsis  longicomis.

1. INTRODUCTION

The analysis of variance (ANOVA) is a widely used statistical technique in analyzing comparative
experiments. However, this technique is valid only when the mathematical and statistical assumptions are
met. These assumptions are: (i) the treatment effects and environmental effects are additive, (ii) the
experimental errors are independent, (iii) the experimental errors have common variance, and (iv) the
experimental errors are normally distributed. Failure to meet any one of these assumptions would affect

both the level of significance and sensitivity of the F- statistic (Cochran, 1947).

When there is sufficient reason to believe that the underlying conditions required in the ANOVA are
not met in the data under analysis, alternatives or techniques to make valid tests on such data possible is
greatly demanded. For data which fail to meet the test conditions there are two approaches recommended
by Bartlett (1947) namely, (i) bend the data to fit the assumptions of the ANOVA by making nonlinear
transformation, or (ii) develop new method of analysis which approximate the original form of the data.
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However, data obtained from many experiments do not usually satisfy the assumptions required,
particularly normallty and homogeneity of variance, so the use of a transformation is needed. Hence, the
reason for transforming data are to find a metric in which the theoretical assumptions made in the analysns
are more readily satisfied and to make the analysis simpler than would be possible (Draper and Hunter,
1969). The use of a transformation may also be necessary to normalize the distribution of the errors or
to achieve greater consistency of variance (Dolby, 1963).

In many statistical experiments, one usually encounters data that are not normally distributed. For
instance, data that consist of integers such as field counts which are randomly distributed over a number
of units usually follow Poisson distribution. Data that are distributed as Poisson have a variance equal to
the mean (Harcourt, 1963). To be able to make the variance of such kinds of data independent of the mean,
a transformation is required.

With the availability of many types of data transformations, one is confronted with the problem of
choosing the best transformation to use. Rather than simply trying various transformations in order to find
out which one works best, Box-Cox (1964) developed a procedure for estimating the best transformation
to normality within the family of power transformation given as

y(l):wT_l), A%0

or
Y=y, =0

The modxﬂed Box-Cox transformation included a shifting constant ¢ defined as

[y+ar-1]
YA =,
or-

y(A)=In(y+c), A=0

The Box-Cox procedure have been used by many researchers since it was developed in 1964.
Guerrero (1982) applied it to the study of binary response model and De Ramos (1983) used it in
comparing the arcsine transformation and Box-Cox transformation in analyzing percentage data. Carrol
and Ruppert (1984) used the Box-Cox procedure infitting theoretical models to data. Barlev (1988) gave
a simpler method of obtaining a class of variance stabilizing transformations. Tsai (1988) used power
transformations in a two-stage procedure to achieve normality and homogeneity of the errors and to
remove non-linearity of the regressnon function. Hinkley (1988) extended Lawrance’s results concerning
test of transformations in regression. Logothetis (1990) assessed the applicability of Box-Cox transfor-
mation for simplifying and statistically validating a “Taguchi analysis”.

A#0

The problem of this study focused on the analysis of the field count damage (dead-hearts) data on

rice, caused by the stalk-eyed fly (SEF) Diopsis longicornis Macquart (Diptera: Diopsidae). The questions
raised were:

(1) Does the field count SEF damage data measured as number of damaged tillers per hill at various
plant growth stages follow a Poisson distribution?

(2) Can the Box-Cox power-shift transformations make the distribution of the errors in SEF damage
normal?

3) Can the Box-Cox power-shift transformations stabilize the variance of SEF damage among the
various plant growth stages?
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With these questions in mind, this study was conducted with the following objectives:

(1) to determine if the field count SEF damage data expressed as number of damaged tillers per hill
in rice follows a Poisson distribution.

(2)to determine ifthe Box-Cox power-shift transformations can make the distribution of the residuals
in a one-way analysis of variance model follow a normal distribution, and

(3) to determine if the Box-Cox power-shift transformations can stabilize the variances of the
experimental errors in SEF damage among the various plant growth stages.

2. METHODOLOGY
The Data

The data used in this study were SEF damaged tillers on the most commonly cultivated rice variety,
ITA 306 (FARO 37). The field experiment was conducted at the National Cereal Research Institute
(NCRI), Badeggi, Nigeria during the 1990 wet season (WS). One week after transplanting, 10 sampling
stations each measuring 1M x 1M were established randomly in the field. In each station, 25 hills of the
rice plants were randomly sampled starting from 14 days after transplanting (DAT) up to 70 DAT, at
weekly intervals. SEF damage was assessed by counting the number of damaged tillers and total tillers
per hill on the 250 randomly selected hills on each sampling occasion.

In this study the SEF damage data from only three growth periods representing the rice’s early
vegetative (14 DAT), maximum tillering (42 DAT) and maturity (70 DAT) stages were used in the analysis.
These growth stages also represent to the varying degrees of vulnerability against SEF. In addition, since
the sample size per sampling time was quite large (equal to 250) it was thought that by using data from
three growth periods was sufficient to obtain reliable results that would answer the objectives of this study.

Fitting the Poisson Distribution

Data on counts such as the number of tillers per hill in rice may follow approximately a Poisson
distribution. Thus, the first part of this study was to determine if the data sets for each sampling time follow
three different Poisson distributions. On a per hill basis, the number of SEF damaged tillers denoted by
a variate x can have values 0, 1, 2, ...,t, where r<r_ , r__being the total number of tillers in a hill of
the rice plant. It was observed that in the 750 hills randomly selected, the values of r__ranged from 8
to 54. Thusto determineifineach samplingtime, damage data set follows a Poisson distribution, the variate
x was denoted by x, defined as the number of damaged tillers in the jth class value of x at the ith sampling
time, and S, was defined as the frequency or number of hills corresponding to x,, where i =1, 2,3, and
Jj=12, .., * » k. being the number of discrete classes of the variate x at the ith samplmg time. Therefore
the data representatron [x /;] gave the class values and class frequencies of the variate x.

If the variate x, in the ith sampling time follows a Poisson distribution with parameter m,, then the
probability function of x, is given by

-m x
£(x,) =-e—i"’|—) x,=0,1,...,1,




where e ~ 2.7183 is the base of the natural logarithm. To determine whether the data x, fitted a Poisson
distribution, the parameter m. was estimated using the maximum likelihood estimate m, given by

To test the goodness of fit of the data x, with the estimated parameter m,, the Kolmogorov-Smirnov
D statistic defined as

D, = max[F(xu) S(x,,)] =1,2,3 was used,
Az

where F(x;)=e ""Z 1=0,1,...x

=0 1| v
and S(x;)= szs"o

The quantity F(x ) was the estimate of the theoretical relative cumulative frequencnes and S(x, ) was
the sample relative cumulative frequencies. The significance of the D, statistic was determined by
comparing D, with the critical valueD_ =D ... WhenD, 2D ... the test was declared significant,
which meant that the data set x,in the ith samplmg time did not follow a Poisson distribution, and when
D < Dos(m), then the data set x fitted a Poisson distribution with parameter estimated by m,.

Estimation of the Parameter 1 in the Box-Cox Power-Shift Transformation

The fact that the three data sets were counts which may follow Poisson distributions, the use of
analysis of variance to compare the mean SEF damage levels of the three sampling times will not be valid
because of non-normality and inequality of the variances. Thus in practice the reasons for using the
transformations (x)'? or (x+. 5)"2 and In(x) or In(x+1) for count data are to more or less normalize the data
as well as to stabilize the variance. As an alternative to these commonly used transformations for count
data, Box-Cox power-shift transformation has been used in many data analyses to attain normality and
stability of variances. Since in the observed three data sets the values of the variate x predominantly
consisted of 0’s, the use of Box-Cox power shift transformation

A
(x+c)” -1
x(A)={"1 forA=0

In(x+c) fori=0

was in order..

Let us denote by x, the number of damaged tillers at the jth hill of the ith sampling time, where i =
1.2,3, =1,2,...,250. The data set x_ were then transformed to



(x; +¢)" -1
x; (M) = A
In(x; +¢) when A =0

when A #0

for values of A ranging from -4 to 2 at interval 0.25 and for fixed values of ¢ equal to 0.25, 0.50, 0.75,
1, 2, and 3. The reason for using A in the range from -4 to 2 was to include the case of A = -1 (reciprocal
transformation), A = 0 (logarithmic transformation), and A = 1/2 (square root transformation), while the
reason for the use of c = .25, .50, .75, 1, 2, and 3 was to include the conventional constants normally added
tox whicharec=.5 and c=1 Wlth the 25 values of A and 6 values of ¢, a total of 25 x 6 = 150 data sets
of 750 observations each were created.

In order to determine the value of A for a given ¢ that will normalize and stabilize the variances of
the three sets of data, the one-way classification model

x,(A)=p+7 +e, e=123 j=12,.,250

was fitted for each value of A per given fixed value of ¢ in order to generate 25 values of the mean square
error (MSE) for every value of c. For each value of &, the likelihood function L(A) defined as

3 250

L(A)—-Eln MSE(1)+(,1 nL ZZln(xu +¢)

where MSE (1) is the mean square error of the transformed data using A, v is the degrees of freedom
associated with MSE, and n is the total sample was computed. The estimate of A, say A, was determined
as value of A corresponding to the maximum value of L(A). Hence,

Ao max L()

The above analysis of variance procedure also gave information as to what happened to the values
of the F-statistic in testing the significance of t_in the model.

Test of Normality

The question of how normal could the distribution of the residuals be after transformation was
answered by analyzing the residuals e, defined by

é, =x,,(/1) p-r, i=123 j=12,.,250

The test for the normality of the residuals e, as carried out for each value of A and for each fixed
value of ¢ using the SAS package done on a mainframe IBM 433 1. The results of the residual analysis
indicated the values and significance of the Shapiro-Wilk W Statistics, as well as the coefficient of
Skewness (g,) and coefficient of kurtosis (g,). When the distribution of the residuals follow approximately
a normal dlstnbutlon the values of W are ciose to unity, while the value of g, and g, are close to 0. Since

the significance ofthe g and g, statistics were not indicated in the output, the approximate standard normal
Z-statistic were computed usmg

Zg)=-8-,  Z(g)-

T 2%

where n = 750.




Test of Homogeneit& of Variances

One of the assumptions of analysis of variance is that the errors must have homogeneous variances.
Thus another question this study would like to answer was what power-shift transformation of the
infestation data could make the within sampling time variances homogeneous. To get the answer, the Box-
Cox power-shift transformation was applied to the raw data for values of A from m-4 to 2 at an interval
of .25, and for ¢ values equal to .25,.50, .75, 1, 2, and 3. After the transformations were made, the
Banlett s homogeneity of variances e test was applled to compare the within sampling time variances.
The combinations of A and ¢ that gave insignificant x?-values indicated the power-shift transformations
" that stabilized the variances.

The first step was to compute the sampling time sampling variance s, and the pooled sample variance
5,2 by the formulas

(@ -x)

2 J

" (n,-1)
> (n - st

Z(ni - l)

3 .
where X; = inj(l) , =250 for all .
i=1

Then the ¥ statistic was computed as
1 3 3
l:z ) = H[Z("i - l)loglo Si - Z("i - 1)IOglo siz]
i i=l

where

3
M=1+ Z ! - l > k=3
3(k-1) I

D N CA)
J

The computations of the x? - statistic was also done using SAS programme on a mainframe IBM
machine.
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3. RESULTS AND DISCUSSION
Fitting of Poisson Distribution to the Data

The distribution of the SEF damage data whichis expressed as of damaged tillers per hill were highly
skewed to the right, with the highest frequency at x = 0 (no infestation) in all of the three plant growth
stages (Table I). The pattern of frequency distributions were quite similar, x=0, f =176, x =1, f = 63,
andx=2,f =11for 14DAT;x=0,f =204,x=1,f =31;,x=2,f, =12;x= 3f 3for42DAT and
x=0,f= 188 x=1,f=30,x=2f = 12 x=3 J= 15 x=4 J, =5 for 70 DAT. Thenumberofdamaged
tillers had a mean of (x) of 340 and variance (s2) of 31395 for 14 DAT, a mean of .256 and variance of

.35990 for 42 DAT; and a mean of .476 and variance of .94922 for 70 DAT It was noted that the mean
and variance at 14 and 42 DAT did not show much difference which signified that each follow a Poisson
distribution, but at 70 DAT the mean and variance were already much different, the variance being about
twice that of the mean signifying that the distribution was no longer Poisson.

Using the mean x as estimate of the parameter m of a Poisson distribution, the estimate of the Poisson
probability functions were:

JIx) = e (:340)/x! at 14 DAT,
Six) = &6 (256)/x! at 42 DAT,
and flx) = e (476)"/x! at 70 DAT.

Th?se estimates of Poisson probability functions were then used to estimate the theoretical relative
cumulative frequency distributions Fi (x,.j) Table II. For example, at 14 DAT (i=1),

S”
F(x,)=e*3 340/ 1=01,.,x,
1=0 L
Hence,
_ 0
F(0)=e® .3404!

=712
F(1)= £(0)+ £ ()

= e-w)[.340%| +.34o%]

=.953
FQ)=fd0)+/(D+f(2)

= e-<340[.34o%| + 340% + .340%']

=10

The other values of F(x, ), namely, F(x, ;) for 42 DAT and F(x, ) for 70 DAT were computed by the
same procedure.

To test the goodness of fit of Poisson distributions to the data, the sample relative cumulative
frequency dlstnbutlon S(x, ) were also computed by the formula

X

S(x,)= z;f" b5 1=0.2,...x,




For example, at 14 DAT (i=1),
Xy
S(x )= Zf./

Hence,

8(0) =7,/250
= 176/250
= 704

S(1) =(f, +f, 250
_176+63

250
=956

S(2).= (1, +f,, +£,)/250

_176+63+11

C 250
'. =10
The test of goodness of fit, i.e., whether S(x ) was in close agreement with F(xl) for all i and j was
done by the Kolmogorov-Smlrnov D statistic which is also shown in Table II. The results indicated that
the distributions of the number of damaged tillers per hill at 14 DAT and 42 DAT followed Poisson
distributions, but that for 70 DAT it deviated from a Poisson type distribution. The reason for no longer

satisfying a Poisson distribution at 70 DAT, was that.higher damage occurred that stretched the'curve
further to the right giving a variance much higher than the mean.

Estimates for x in the Box-Cox Power-Shift Transformation

The mean square error values (MSE) obtained from the analysis of variance of the transformed
variates x™® are shownin Table III. It will be noted that whenc=.25,.50and.75. The MSE values attained
a minimum value when A was varied from -4 to 2. For example, at ¢ = .25, the minimum value of MSE
was. 55 corresponding to A =.50; at ¢=.5, the minimum value of MSE was .35 corresponding to . = 0
and A = .5; at ¢ = .75 the minimum value of MSE was .103 corresponding to A = -3.0. However, when
¢ =1, 2, 3, the MSE values increased exponentially as A was varied from -4 to 2. These results indicated
that the minimum values of MSE occurred at values of A lower than -4.0.

The results shown in the Table II also indicated that when the power A < 1, the values of MSE
decreased as the value of ¢ was increased from .25 to 3; the value of MSE was constant for all values of
¢ when A = 1; and when the power A > 1, the values of MSE increased as the values of ¢ were increased.
For example, at A = -4, the MSE values decreased from 729.9 to .0000103 when ¢ was increased from

.25 to 3, and when A = 2, the MSE values increased from 3.08 to 14.7 when c increased from .25 to 3,
respectively

By substxtutmg the values of MSE in the likelihood function
| 250

L(y) = ——ln MSE(1) +(1-1)ZL 7ZZln(xu +c)

where y= 747 and n=1750 for all the values of A and ¢, the maximum values ofL(k) was found tobe 1205.8
corresponding to 3 =-2.0 when ¢ = .25; equal to 1042.7 corresponding to 3 =-2.75 when ¢ =.50; and



equal to 962.9 corresponding to 3 =-3.50 when ¢ =.75 (Table IV). As the minimum vaLues of MSE were
not attained by varying the values of 3 for ¢ =1, 2, and 3, the maximum values of L() ) whenc =1, 2,
and 3 were also not attained. Thus no estimates of A were obtained for ¢ = 1, 2, and 3. Therefore, the
Box-Cox power-shift transformations for the number of damaged tillers were as follows:

-2.0
) -1
«® = (x+.25)

(2.0) forc= .25
‘—2.75
s 2 B30T -1 g o= 050
(-2.75)
.75)—3.50 _1
WO Castl) Bl -
and (33.50) forc=.75

Effect of the Box-Cox Power-Shift Transformations on the Distributions of
Residuals

The resultsof the analysis of theresiduals e_were summarized in terms of the Shapiro-Wilk W statistic
(Table V), coefficient of skewness g, (Table \/I), and Kurtosis coefficient g, (Table VII),
where 6, =xM-{i-1,i=123,;=12,.,250

c+c) -1
) (—JY%"— forAz0

X

In(x;+c) forA=0

. 350 250 £ ®
,’L=ZZ u/SO—p,

i=l j=1

o m
and 1:,.=Zl /50—&

Asreference points, the values of normality statistics ¥, g and g, were .633,3.07, and 1435, respectively,
when A = 1, i.e., there were only shifting of constant transformations made on the raw data. All of these
normality statistics were very significantly different from the critical values of W ... = 930,
£,[.01,750] = 0.175, and g,[.01,750] = .350.

. Asto what happened to the values of W when the values of A where changed from -2.0 to 2.0 at fixed
value of ¢ can be seen in Table V. It was noted that the value of W attained a maximum value of .663 or
.662 withinthe ranges of A and ¢. So this maximum value was still highly significant compared to the critical
value W ... =.930. Note that P[W<W .. ]1=.01, hence (W <.663) <<.01. The maximum values
of W were observed whenx = .50 and ¢ =.25 and .50; A= .25and c=.75and 1.0; A =0 and ¢ =2; and
A =-.25 and ¢ = 3.0. For the other combinations of A and c, the values of /¥ obtained were smaller than
.662 which means that the distributions of the residuals for those transformations were even more non-
normal.

The effects of the transformations on the skewness coefficient (g,) can be seen in Table VL. It was
noted that as A was varied from -2.0 to 1 and the ¢ value was varied from .25 to 3, the values increased
to a constant value of 3.07. The lowest value of g, was 1.14 when A =-2.0 and ¢ = .25. The values of g,
increased very rapidly for A > 1, the rate of increase being faster for lower values of c.




There were profound effects of the power-shift transformations on the values of the Kurtosis
coefficient (g,). At any given fixed value of c, the values of g, increased exponentially as the values of A
was mcreaseé from -2.0 to 2.0. For example, at ¢ = .25, g, =-.636 when A =-2.0 and g, = 120.96 when
A = 2.0. The desirable values of g, were those whxch values were close to 0 or to the critical value

g,[.0] 75»0] .350. Therefore, the combinations of A and ¢ that made the values of g, not significant or
almost not significant were:
(A =-.25, c=.25) giving g, = -.131
(A =-25, ¢=.50) giving g, = .322
(A =-.50, ¢ = .50) giving g, = -.046
(A=-1.0, c=.75) giving g, = -.211
(A=-1.0,c=1.0) giving g, = .003
and (A =-2.0, c=2) giving g, = .016.

The Effects of the Power - Shift Transformation on the Stabili;ation of
Variances

The results of the Bartlett’s - X? test for homogeneity of variances are shown in Table VIII. For the
seven values of A from - 4 to .5 and six values of ¢ from .25 to 3, the values of X? obtained ranged from
.0224 to 31.26. Comparing these values of X? with the critical value X2 =5 991, some values were
significant [X? 2 5.991] and some were not [X? < 5.991]. Those values of bict that were not sngmﬂcant are

underlined to indicate the appropriate combinations of A and c that made the within sampling time variances
homogeneous.

Based on the results shown in Table VIII, some of the best combinations of x and c that stabilized
the variances of the damage data were as follows:

(HDA=.25,¢c=.25
(2)A=0, c=.250rc=.50
B)A=-1, c=lorc=2
@WDA=-2 ¢c=3

Therefore, #he power-shift transformation that can be applied to stabilize the variances of the number of
SEF damaged tillers, is any of the following simple transformations:

(1) Logarithmic (A = 0):
X =In (x +.25)
or xX?=In(x +.50)

2) Reéiprocal (A=-1):

x(_])=ﬂ)-l___l
Tx+l
or
( ])_(x+2)1‘|
x+1
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The Effects of the Power-Shift'Transfofmations on the F Statistics

From the previous sections it was found out that the power-shift transformation was ableto stabilize
the variances of the SEF damage field count data. It was also found out from the residual analyses that
the normality was not attained; the distribution remained skewed; and the distribution attained normal
heights. The question therefore is, which of the F values given in Table IX are considered valid for testing
the differences between the damage levels in three plant growth stages. But basing from the skewness
coefficient (g,), Kurtosis coefficient (g,), normality test (w) and homogeneity test (X?), the best
combination for A and ¢ were A = -1 and ¢ = 1.0. For this combination, the F value was 3.50 at 2 and 747
degrees of freedom. The corresponding Type I probability level is about .05. On the other hand, the F value
corresponding to no transformation (A = 1) was 6.68 with probability level about .001. The statistical
implication of these results is that on the average even small differences in damage levels will be declared
significant more oftenly even though the actual damage levels in the populations are the same.

4. SUMMARY AND CONCLUSIONS

Three sets of field count SEF damage data onrice variety, ITA 306 for three plant growth stages were
statistically analyzed with the main objective of determining whether the Box-Cox power-shift
transformations could stabilize the variances and normalize the distribution of the data. The results are as
follows:

(1) At 14 and 42 DAT the distributions of the SEF damaged tillers followed the Poisson distribution.
The mean damage levels and variabilities were similar in magnitudes, thus made the data to fit the Poisspn
model. However, at 70 DAT, the distribution of the data did not follow a Poisson distribution because
even though the mean damage levelincreased, the variability also increased to a magnitude that was about
double of the mean.

(2) The values of the power of X that maximized the Box-Cox log likelihood function were - 2.0 for
¢=.25;-2.75 forc=5; and - 3.50 for ¢ =.75. These results differed very much from those obtained in
residual analysis for which good choices for A were 0, .25, and .5 based on the normality test w; -.25,
-.5 and -1.0 based on the kurtosis statistic (g,); and -1.0 and -2.0 based on the skewness statistic (g, ).

(3)The power-shift transformation had profound positive effects on stabilizing the variances. The
good choices for the power of X were A =0 for any shifting constant ¢ equal to A =25, A=.50 and A=75
and A =-1 for c equal to 1.

(4)From the results above, the use of the power A = -1 and shifting constant ¢ = 1 is recommended.

This means that the appropriate transformation for field count SEF damaged tillers (dead-hearts) data in
rice is reciprocal, which in simplified form is:

X(h) = x+1



TABLE 1

Frequency and percentage distributions of the number of SEF damaged tillers per hill
after transplanting, ITA 306, 1990 WS.

Number of Days after transplanting (DAT)
damaged 14 42 70
tillers 4
) ® % ® % ® %
0 176 0.704 204 0.816 188 0.752
1 63 0.252 31 0.124 30 0.120
211 0.044 12 0.048 12 0.048
3 0 0 3 0.012 15 0.060
f 4 0 o 0 0 5 0.020
Sum 250 1.0 250 1.0 250 1.0
Mean | 340 0.256 0476
Variance 0.31365 0.35990 0.94922
TABLE II .

The Kolmogorov-Smirnov goodness of fit test (D) for fitting the Poissong
distribution to the number of SEF damaged tillers per hill in three plant growth
stages, ITA 306, 1990 WS.

‘Number of SEF 14 DAT 42 DAT 70 DAT

damaged tillers
(x) - F() S(x) F(x) S(x) F(x) S(x)
0 0.712 0.704 0.774 0.816 0621 .0752
1 0.953 0.956 .0.972 0.940 0917 0.920
2 1.0 1.0 0.996 0.988 0.998 0.980
3 . ‘ 1.0 1.0 0.999 0.988
4 1.0 1.0

Estimate of 0.340 0.256 0.476

Parameter (m)

D-value 0.008 NS 0.042 NS 0.131 **

X

F(x) = Ei"% S(x) =Y %45 D = max|F(x)- S(x)|

i=0
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TABLEII

Values of the mean square error (MSE) in the analysis of variance at fixed values of A and c.

C
A 25 50 75 . 2 3
40 72990 292 111 0106 0000317 00000103
3.0 &.65 125 103 0170 00159 0000127
20 1119 k9] 106 0302 00121 0000166
-1.0 208 39 136 0621 00824 00232
-5 108 - 35 168 0964 0226 00897
0 .68 35 227 163 0647 0357
5 55 2 349 29 1963 1478
1 &1 641 641 & el 641
2 308 3.74 148 529 9355 147
The underlined values are the smallest at a given value of c.
TABLE IV

Estimates of the power corresponding to the maximum of log likelihood function L at fixed
values of c.

c=.25 c=.50 c=.75
A L A L L
-2.50 1192.6 -3.25 1035.2 -4.0 958.6
-2.25 1202.5 -3.0 1040.5 -3.75 961.9
=2.0 1205.8 =275 1042.7 -3.50 . 962.9
-1.75 1201.8 -2.50 1038.2 -3.25 961.9
-1 50 1188.4 -2.25 9133 -3.0

function L{max).

ndlied gu are etiate v ndthe creponing to axim log likeliood

957.7



TABLE V
Values of the normality statistic W based on residuals at fixed values of Aand c.

vom— e ——————————————— ta—
C
A — 25 50 75 1 2 3 4
20 . 609 612 617 621 631 645 . 653
-1.0 615 62 627 631 651 658 659
.5 624 630 641 647 - 659 661 661
225 629 642 650 655 661 662 661
0 643 653 657 660 662 661 661
25 656 661 662 663 660 657 656
50 663 663 661 660 655 656 656
10 633 633 633 633 633 633 633
15 525 544 557 566 588 599 606
emm—— e ——————————
All computed values of W are highly significant.
TABLE VI

Values of the skewness coeflicient (g1) based on residual analysis at fixed values of Aand ¢

c

A L 50 75 1 2 3

-2.0 - 1.14 1.15 1.16 ’ 1.19 1.30 1.42
-1.0 - 1.16 1.20 1.24 1.30 1.48 163
-.5 - 1.21 1.28 1.36 143 1.64 1.81
0 - 1.36 1.48 1.58 1.64 1.90 2.06
..5 - 1.82 195 2.05 2.13 2.33 2.46
1 - 3.07 3.07 3.07 3.07 3.07 3.07
2 - 935 8.61 7.99 7.48 6.11 5.35

All values of gl are significantly different from 0.



TABLE VII

Values of the kurtosis coefficient (g2) based on residual analysis at fixed values of A and ¢

']
c

A .25 .50 5 1 2 3
-2.0 -.636 -.605 -.545 -.459 .016 552
-1.0 -.567 -.410 =211 .003 .880 1.683
-5 -373 -.046 -.287 .614 1.785 2.776
-.25 =131 322 / 747 1.143 2.488 3.561

0 361 .943 1.473 1.946 3.469 4,611

5 3.06 3.982 4.685 5.260 6.910 7.993

1 14.35 14.35 14.35 14.35 14.35 14.35 .

2 120.96 105.89 93.79 84.01 59.40 46.74

All values of g2 are significantly different from O except those which are underlined -
TABLE VIII
Values of X statistic (Bartlett) for testing equality of variances of fixed values of A and c.
c

A 25 50 75 1 2 3
-4.0 16.36 15.97 15.19 14.10 8.74 427
-3.0 16.13 15.06 13.48 11.68 5.13 1.42
-2.0 14.99 12.36 9.62 7.16 1.27 034
-1.0 10.00 5.58 2.77 1.12 33 3.44

0 0224 178 2.52 451 11.92- 17.61
25 1.69 4.77 7.69 10.33 18.38 23.77
.50 9.25 13.55 16.85 19.53 26.83 31.26
\ 3 3

X’@an = 3°2°[§(n,. -1)log,, s* - iz_l:(n,. -1log,, s,.z]
3
M=1=%> 27—

All values of X? are significant (p<.05) except those which are underlined.
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TABLE IX
Values of the F-statistic in the analysis of variance at fixed values of A, and c.

C

A .25 50 75 1 2 3
40 - 3% 393 388 381 3.55 344
30 394 387 378 3.69 346 345
20 - 388 373 361 353 347 363
-1.0 366 352 . 348 3.50 378 4.12
-5 3.53 351 3.59 3.69 416 . 455
0 34 383 - 403 421 476 5.12
5 455 4.84 5.05 521 567 5.85
1 | 668 6.68 6.68 6.68 6.68 6.68
2 9.54 9.38 948 9.08 8.59 8.24

All values of F are significant with 2 and 747 degrees of freedom [F(0.05) = 3.00].
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